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Current approved drug treatments for Alzheimer disease (AD) include cholinesterase inhibitors (donepezil, rivastigmine, galantamine)
and the NMDA receptor antagonist memantine. These drugs provide symptomatic relief but poorly affect the progression of the
disease. Drug discovery has been directed, in the last 10 years, to develop ‘disease modifying drugs’ hopefully able to counteract the
progression of AD. Because in a chronic, slow progressing pathological process, such as AD, an early start of treatment enhances the
chance of success, it is crucial to have biomarkers for early detection of AD-related brain dysfunction, usable before clinical onset.
Reliable early biomarkers need therefore to be prospectively tested for predictive accuracy, with specific cut off values validated in
clinical practice. Disease modifying drugs developed so far include drugs to reduce b amyloid (Ab) production, drugs to prevent Ab
aggregation, drugs to promote Ab clearance, drugs targeting tau phosphorylation and assembly and other approaches. Unfortunately
none of these drugs has demonstrated efficacy in phase 3 studies. The failure of clinical trials with disease modifying drugs raises a
number of questions, spanning from methodological flaws to fundamental understanding of AD pathophysiology and biology.
Recently, new diagnostic criteria applicable to presymptomatic stages of AD have been published. These new criteria may impact on
drug development, such that future trials on disease modifying drugs will include populations susceptible to AD, before clinical onset.
Specific problems with completed trials and hopes with ongoing trials are discussed in this review.

Introduction

Alzheimer’s disease (AD) is a common disorder character-
ized by cognitive decline [1] associated with the presence
of b-amyloid (Ab) in plaques, intracellular aggregates of tau
protein, forming neurofibrillary tangles (NFT) and progres-
sive neuronal loss [2]. Ab plays a primary role in AD patho-
physiology [2]. Oligomer species of aggregated Ab exert
toxic effects on synaptic and cellular functions, finally
leading to neurodegeneration and cognitive, as well as
neuropsychiatric, symptoms [3]. Current treatment of AD
includes cholinesterase inhibitors (donepezil, rivastigmine,
galantamine), used for mild to moderate AD, and the
NMDA receptor antagonist, memantine, approved for the
treatment of moderate to severe AD [4, 5]. These drugs
mainly provide symptomatic, short-term benefits, without

affecting the underlying pathogenic mechanisms of the
disease [4], though a neuroprotective potential has also
been proposed [6, 7]. Developing disease modifying drugs,
able to counteract the progression of AD, is one of the
biggest challenges of modern pharmacology. The patho-
physiological process of AD begins many years before clini-
cal diagnosis is set.The optimal time for disease-modifying
drug treatment may therefore be in the presymptomatic
stage of AD, where the disease is still hidden. Recently, the
criteria for the clinical diagnosis of AD have been revised by
the National Institute on Ageing and the Alzheimer’s Asso-
ciation workgroup [8].The new criteria incorporate biomar-
kers to identify early stages of AD, susceptible to being
treated with disease modifying drugs [9, 10].

In the present review, we will summarize the new phar-
macological strategies for the treatment of AD, focusing
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our attention on potential disease modifying drugs cur-
rently studied in phase 3 clinical trials. A summary of the
current status of the clinical development of some disease
modifying drugs is shown in Table 1.

Disease modifying drugs: definition
and implications for drug
development in AD

A disease modifying drug is an agent that slows the pro-
gression of structural damage, such that its effect is persis-
tent and can be detected even after stopping the
treatment, because the cumulative pathological changes
would be less severe in the treated group as compared
with the control (placebo) group. In contrast, the definition
‘symptomatic drug’ refers to an agent that does not alter
the progression of the disease, but only decreases (palli-
ates) the severity of symptoms. The symptomatic effect is
usually reversible, such that, if the treatment is interrupted,
the treated group might be indistinguishable from the
control (placebo) group. Definition and validation of
appropriate biomarkers and scales of clinical outcome are
of paramount importance for assessing efficacy of disease
modifying drug treatments for AD. Agents that target the
underlying pathophysiology of AD are expected to have
greater effect on biomarker levels and disease progression
before any substantial, irreversible functional loss occurs
[11]. Biological markers of AD may be divided into different
classes according to the ‘amyloid’ hypothesis. Biomarkers
of brain Ab amyloidosis include both reduction in Ab42 in
cerebrospinal fluid (CSF) [12] and positron-emission
tomography (PET) evidence of Ab deposition, using a
variety of specific ligands [13]. Elevated tau in CSF seems
related to neuronal injury, but is not specific for AD.
However, the association of elevated tau with low concen-
trations of Ab42 in CSF is considered the most informative

biomarker of AD. Furthermore, low Ab42 in CSF together
with elevated tau might help in predicting the progression
of patients with mild cognitive impairment (MCI) to AD [9].
In this respect, a recent report shows, in a presymptomatic
carrier of an APP mutation, decrease of Ab42 and increase
tau concentrations in CSF, with substantial changes in a 5
year, symptom free, interval [14]. Further studies are
needed, both in early onset AD and late onset AD patients,
to confirm whether these CSF biomarkers might be sensi-
tive indicators of presymptomatic disease.

Other biomarkers, such as PET measurement of fluoro-
deoxyglucose 18F (FDG) uptake and magnetic resonance
imaging (MRI) of brain atrophy, track indices of synaptic
dysfunction and neuronal injury and are less specific [12].
However,all together these biomarkers may be very helpful
in the early detection of AD-related brain dysfunction. In
fact,studies conducted in carriers of AD genetic risk factors,
have demonstrated the presence of Ab accumulation in
CSF, positive PET amyloid imaging, FDG-PET hypometabo-
lism and functional MRI abnormalities up to a decade
before the clinical onset of AD [10, 12]. These biomarkers
need to be prospectively tested for predictive accuracy.
Moreover, specific cutoff values need further validation in
clinical practice. Neuropsychological and neurobehav-
ioural tools to detect the earliest clinical manifestations of
AD might be particularly useful in monitoring the response
to disease modifying therapies in amnestic MCI patients,
that have a prominent impairment in episodic memory and
positive biomarkers [9]. Because AD is slowly progressing,
demonstrating the effectiveness of a disease modify-
ing treatment might require years. Most clinical studies
examine 18–24 months of active treatment compared with
placebo, but should provide informative data for a much
longer period of time, given that patients are likely to take
these medications for many years in clinical practice.

Up to now no disease modifying drugs are available for
AD. Several have been tested, down to phase 3, but none

Table 1
Current status of clinical development of some disease modifying drugs for treatment of Alzheimer’s disease (AD)

Drug
Mechanism of action relevant
for AD Phase of study Result of study Caveat of study

Rosiglitazone b-secretase inhibition (?) 3 Ineffective Lack of biomarker
Semagacestat g-secretase inhibition 3 Premature end Severe adverse drug reaction

Tarenflurbil g-secretase modulation 3 Ineffective Low potency, blood–brain barrier passage
Tramiprosate Inhibition of Ab oligomerization 3 Ineffective –

Scyllo-inositol Inhibition of Ab oligomerization 2 Ineffective Biomarker change
Bapineuzumab Ab clearance 3 Ongoing Vasogenic oedema, amyloid angiopathy

Solaneuzumab Ab clearance 3 Ongoing –
Lithium Inhibition of tau phosphorylation 2 Clinical improvement Decrease of P-tau in CSF –

Methylthioninium chloride Inhibition of tau aggregation 2 Clinical improvement with 60 mg day-1 Lack of biomarker
Nilvadipine Ab clearance Open label Clinical improvement Lack of biomarker

Latrepirdine Mitochondrial protection 3 Ineffective –
3 Ongoing (in association with other drugs) –

Disease-modifying drugs for Alzheimer’s disease
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has yet reached approval. The failure of clinical trials with
disease modifying drugs raises a number of questions,
spanning from methodological flaws to fundamental
understanding of AD pathophysiology and biology. Some
problems may arise from publication bias that favours
positive results [15, 16], biomarkers and clinical outcomes
utilized in animal models that substantially differ from
human studies and time course of treatment in relation to
development of disease, i.e. clinical studies enrol symp-
tomatic patients, where some degree of neurodegenera-
tion is already in place. Since the original Alzheimer’s
description [17], Ab production and deposition has been
considered as the main activity responsible for the patho-
logical mechanism of AD, because it was documented in
amyloid plaques of AD subjects by post mortem analysis.
This view is referred to as the ‘Ab hypothesis’. The Ab
hypothesis has recently been challenged by the observa-
tion that Ab clearing is not necessarily accompanied by
cognitive improvement [2, 18, 19].The physiological role of
Ab peptides, encoded also in the genome of the normal
(healthy) population, has just begun to be unravelled and
might be involved in basic mechanisms of cognition and
memory, such as long-term potentiation (LTP) [20]. Proper
folding and aggregation state of Ab, rather than its abso-
lute concentration, seems to be the determinant of neu-
ronal toxicity in AD [21]. While assessing Ab folding and
aggregation state in vitro or post mortem in brain tissues is
achievable [22, 23], this is not feasible, at present, in the
living human brain, which makes the use of parenchymal
Ab as an AD biomarker very difficult.

Drugs to reduce Ab production

As shown in Figure 1,generation of Ab40 or Ab42 is the result
of two sequential cleavages of the amyloid precursor
protein (APP). First, extracellular cleavage of APP by
b-secretase 1 (also termed beta-site amyloid precursor
protein cleaving enzyme 1 or BACE1) produces a soluble
extracellular fragment and a cell membrane-bound frag-
ment referred to as C99. Subsequent cleavage of C99
within its transmembrane domain by g-secretase releases
the intracellular domain of APP and generates Ab
(Figure 1). In contrast, initial cleavage of APP by a-secretase
prevents generation of Ab, because, by cleaving APP closer
to the cell membrane than b-secretase does, it removes a
fragment of Ab (Figure 1) [24]. Therapeutic attempts have
targeted inhibition of b-secretase and g-secretase.

b-secretase 1 is an aspartyl protease that shares some
features with HIV aspartyl proteases [25]. No known muta-
tions in the gene encoding b-secretase have been related
to familial AD,but elevated levels of this enzyme have been
found in sporadic AD [26] and might be associated with
polymorphism in the promoter region [27]. Because
b-secretase 1 also has other substrates (including
neuregulin-1, which is involved in myelination), develop-

ment of inhibitors may theoretically face problems of tox-
icity related to non-specific effects, though deletion of the
b-secretase 1 gene produces only minor phenotype
changes [28]. The thiazolidinediones, rosiglitazone and
pioglitazone, that have been tested for AD in randomized
controlled trials (RCTs), may in part act as suppressors of
b-secretase expression [29]. Chang et al. reported recently
[30] that the administration of a b-secretase inhibitor
rescued cognitive decline and reduced brain Ab in AD
mice Tg2576, with no toxicity over a 7 month time period.
Up to now no efficacy data are available from phase 3
clinical trials of b-secretase inhibitors. Specific problems in
developing safe, non-toxic b-secretase inhibitors are
related to blood–brain barrier (BBB) penetration and rea-
sonable selectivity. Some interesting compounds have
been designed by using crystal structure based inhibitor
design [31] and some have been tested or currently are in
phase 1 trials [32]. As mentioned above, rosiglitazone is an
antidiabetic drug that has been clinically tested in AD. The
main mechanism of action of rosiglitazone in diabetes, i.e.
PPARg binding and subsequent transcription of genes
involved in metabolic control, is precisely defined at the
molecular level [33]. The same, however, cannot be stated
for a supposed beneficial effect of rosiglitazone in AD.
Starting from a correlation between insulin resistance and
AD [34], preclinical studies looked for an effect of rosiglita-
zone in animal models of AD, without, however, a precisely
defined testable hypothesis in terms of molecular and
cellular mechanisms [35]. Rosiglitazone was shown to
improve spatial learning and memory abilities, slightly
decrease Ab42 concentrations in brain (but not Ab40) and
induce insulin-degrading enzyme (IDE), without affecting
the amyloid plaque burden in Tg2576 mice [36]. IDE is a
thiol metalloprotease that degrades insulin as well as
monomeric Ab [37], whose expression has been shown to
be PPARg-dependent in neurons [38]. However, the quan-
titative contribution that IDE may give to Ab turnover in
brain parenchyma remains to be determined, and PPARd,
rather than PPARg, may have a stronger effect in expression
of Ab degrading enzymes [39]. In one phase 2 study, after 6
months treatment with rosiglitazone, patients with mild
AD or amnestic MCI exhibited better delayed recall and
selective attention as compared with the placebo group
[40].The only biomarker used was Ab in plasma, which was
decreased in the placebo group [40].This finding was inter-
preted by the authors as an index of Ab deposition in brain,
potentially contributing to clinical worsening, an explana-
tion that cannot be considered satisfactory, because, at
variance with Ab in CSF [13, 41], circulating Ab does not
provide reproducible correlation with AD [42] and does
not reflect Ab processing in the brain [43]. In another phase
2 study, mild to moderate AD patients were treated with
three different doses of rosiglitazone for 24 weeks and the
data were stratified according to the APOE e4 allele status.
In APOE e4 non-carriers rosiglitazone seemed to determine
a cognitive and functional improvement, whereas APOE e4
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allele carriers showed no beneficial effect [44]. Of note, no
specific AD biomarker was assessed in this study. Analysis
of data according to the APOE e4 allele status was based on
the hypothesis that e4-positive individuals, susceptible to
early onset AD [45], have disturbances in enzymatic path-
ways of glucose metabolism in the brain, reminiscent of
insulin resistance as seen in type 2 diabetes [46, 47], that
might be sensitive to PPARg activation by rosiglitazone. In
contrast with the initial hypothesis, however, a mild clinical
benefit was seen in e4 non-carriers. The subsequent larger
phase 3 study showed no significant clinical benefit of
rosiglitazone in whatever APOE genetic population exam-
ined [48], not confirming the preliminary observation

made in the phase 2 studies. The overall criticism that
might be formulated (retrospectively) here is that two ele-
ments that may increase the chance of success in a clinical
study, a precise biological hypothesis and a quantitative
assessable biomarker, were lacking.

g-secretase is a protease complex that cleaves proteins
at residues within their single membrane spanning
domain. The most known substrate of g-secretase is APP,
whose cleavage produces Ab. The g-secretase complex
consists of four individual proteins, presenilin, nicastrin,
APH-1 and PEN-2 [49]. A fifth protein, known as CD147, acts
as a negative regulator of the complex [50].Presenilin is the
catalytic subunit and mutations in the presenilin gene rep-
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resent a major genetic risk factor for AD [51]. Although
g-secretase mutations that completely knock out enzyme
function prevent generation of Ab, mutations that only
partially knock out enzyme function often enhance gen-
eration of Ab, a finding ascribed to a gain of function [52].
Hence, g-secretase inhibitors may enhance the production
of Ab42 while blocking other g-secretase activities, thus
mimicking the effects of PS mutations [52], which may, at
least in theory, produce paradoxical outcomes in AD trials
(increased Ab deposition and cognitive worsening). Fur-
thermore, development of g-secretase inhibitors as disease
modifying drugs presents problems related to potential
non-specific effects. This is because g-secretase is not only
responsible for Ab generation but is also involved in
intramembranous cleavage of several proteins, including
the Notch receptor, ErbB4, p75NTR neurotrophin receptor,
N-cadherin and the sodium channel b4 subunit [53]. Sema-
gacestat was the first g-secretase inhibitor to undergo
extensive clinical testing and was shown to reduce Ab con-
centrations in plasma and Ab production in the central
nervous system (CNS) [54, 55].Two large phase 3 RCTs with
semagacestat were prematurely stopped because of some
serious collateral adverse effects, including haematologi-
cal, gastrointestinal and skin toxicity, that have been attrib-
uted to inhibition of the Notch signaling pathway [56].
Furthermore, in these studies, no improvement or moder-
ate worsening of cognition was observed, perhaps related
to g-secretase inhibition within the CNS [57–59]. Notch-
sparing g-secretase inhibitors (second generation inhibi-
tors) and/or modulators (agents that shift g-secretase
cleavage activity from longer to shorter b-amyloid species,
without affecting Notch cleavage) are in clinical develop-
ment. Begacestat [60], BMS-708163 [61], PF-3084014 [62]
and CHF-5074 [63] display a 10–100 fold selectivity on
APP over the Notch cleavage. Some non-steroidal anti-
inflammatory drugs (NSAIDs) act as g-secretase modula-
tors, decreasing Ab40 and Ab42, while increasing Ab38 [53].
Tarenflurbil (the R-enantiomer of flurbiprofen) was tested
in phase 3 RCTs but did not appear to slow cognitive
decline [19], while increasing frequency of dizziness,
anaemia, and infection [19]. The failure of tarenflurbil may
be ascribed to low potency and poor brain penetration
[64]. Furthermore, cyclo-oxygenase inhibition in microglia
may result in inhibition of Ab clearance [65].

Other drugs, such as 1,4-dihydropyridine (DHP) L-type
calcium channel blockers, are known to interfere with Ab
production. Different large population-based studies have
demonstrated that certain DHP calcium channel blockers
used for the treatment of hypertension, such as nilvad-
ipine, can reduce the risk of developing AD [66, 67]. Recent
studies suggest that such benefits are not related to the
drug’s blood pressure lowering function [68]. Both nilvad-
ipine and amlodipine decrease Ab production from APP in
vitro, but only chronic oral treatment with nilvadipine
reduces Ab accumulation in a transgenic model of AD, by
targeting both production and clearance of Ab across the

BBB [68]. In a small study, nilvadipine slowed cognitive
decline in MCI patients with hypertension [69]. Nilvadipine
stabilizes cognition [70] and is well tolerated, with no dan-
gerous blood pressure lowering effects [70]. A multicentre
phase 3 clinical trial will start in January 2012 to assess the
efficacy of nilvadipine as a disease modifying drug in
AD patients (http://www.alzforum.org/new/detail.asp?id=
2838).

Drugs to prevent Ab aggregation

Aggregation of monomeric Ab species into higher
molecular weight oligomers produces the primary neuro-
toxic species in AD [71, 72]. Tramiprosate (3-amino-L-
propanesulfonic acid) is a glycosaminoglycan that binds to
Ab monomers and prevents formation of oligomers, thus
enhancing Ab clearance from the brain [73]. An initial,
phase 2 study showed that tramiprosate reduces Ab42 con-
centrations in CSF [74]. In a larger, phase 3 study, however,
tramiprosate did not determine clinical improvement [75],
although a recent subanalysis suggests that it may exert
some beneficial effects on memory, language and praxis
skills [76], requiring further clinical evaluation.

Because zinc and copper are catalysts for Ab aggrega-
tion and stabilization of amyloid plaques, chelating agents
may be effective in dissolving amyloid deposits in vitro and
in vivo. PBT2 is an 8-hydroxy quinolone, orally administered
and with good BBB permeability, that removes copper and
zinc from CSF, promotes Ab oligomer clearance and
restores cognition in AD mouse models [77, 78]. In a recent
phase 2a study, PBT2 lowered Ab42 in CSF and improved
cognition, but no correlation was found between Ab in CSF
and cognitive changes [77].

Scyllo-inositol (scyllo-cyclohexanehexol, AZD-103,
ELND-005) is an orally administered stereoisomer of
inositol that crosses the BBB using inositol transporters.
Scyllo-inositol can directly bind to Ab oligomers promot-
ing dissociation of Ab aggregates [79, 80]. Interestingly,
TgCRND8 mice treated with AZD-103 show a 25% reduc-
tion of Ab oligomers with a concomitant increase in mono-
meric species (+133%), suggesting that this drug can
prevent the transition from Ab monomers to Ab oligomers
[80]. Recently, a phase 2 clinical trial (NCT00568776) evalu-
ating safety, efficacy and effects on biomarkers of ELND-
005 in mild to moderate AD patients has been completed
[81].Of the three tested doses, 250, 1000 and 2000 mg, only
250 was well tolerated, whereas side effects in the two
higher dose groups led to early discontinuation. In spite of
lack of significant clinical improvement, patients receiving
250 mg of ELND005 had an increase in their brain ventricu-
lar volume as well as a reduction in CSF Ab42. Large-scale
phase 3 clinical studies are needed to evaluate the clinical
efficacy of ELND005.

Additional small molecules, including polyphenolic
compounds such as curcumin (–)-epigallocatechin-3-
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gallate (EGCG) and grape seed extract, attenuate Ab aggre-
gation [80, 82]. EGCG has shown good tolerability
(NCT00525668) and is currently being evaluated in a phase
2–3 RCT (NCT00951834).

Drugs to promote Ab clearance

Immunotherapy toward Ab is considered one of the most
promising approaches to develop disease modifying
drugs in AD, because it can potentially affect production,
aggregation and deposition of Ab [83, 84]. Active immuni-
zation by vaccination promotes formation of antibodies
against pathogenic forms of Ab, by stimulating an immune
response, whereas passive immunotherapy supplies anti-
bodies from an exogenous source [83]. Active Ab immuno-
therapy has been studied and validated since 1999, when
it was demonstrated that generation of Ab antibodies
resulted in clearance of cerebral Ab by microglial phago-
cytosis of antibody-opsonized Ab deposits [85]. Ab immu-
notherapy improves cognitive deficits in AD models and
lowers plaque load in non-human primates. Unfortunately,
a phase 2 clinical trial of active immunization using full
length human Ab42 peptide with QS-21 adjuvant was
stopped prematurely because some patients developed
brain inflammation with aseptic meningoencephalitis [86].
T cell recognition of the human full length Ab peptide may
have induced an adverse autoimmune response [87]. Fur-
thermore, although Ab-specific antibodies clear brain
amyloid plaques, they do not halt progressive neurode-
generation [88, 89] or affect vascular amyloid and hyper-
phosphorylated tau deposits [90]. Recent alternative
approaches are based on shorter Ab immunogens that
target the N-terminus (strong B cell epitope) without
affecting the mid-region and C-terminus (T cell epitopes)
[84]. Because of the low responsiveness and adverse
reactions to vaccines, passive immunotherapy has been
proposed as an alternative strategy [91–93]. Passive
immunotherapy, however, may also be associated with
adverse effects such as vasogenic oedema and cerebral
amyloid angiopathy with microhaemorrhages [5, 94, 95].
The most studied and advanced Ab targeted antibody is
bapineuzumab [96]. The efficacy and safety of bapineu-
zumab seem to be related to APOE allele status. In APOE e4
carriers this drug can favour the onset of vasogenic
oedema [93] that may limit its clinical use and has led to
the abandonment of the highest dose of the drug
(2 mg kg-1) [97]. Lower doses of bapineuzumab are cur-
rently used in phase 3 trials in e4 carriers, whereas slightly
higher doses can be used in non- e4 carriers [97]. To
date seven phase 3 studies with bapineuzumab are
ongoing (NCT00996918, NCT00574132, NCT00676143,
NCT00667816, NCT00575055, NCT00998764 and
NCT00937352). Another humanized anti-Ab monoclonal
antibody in advanced clinical development is solan-
ezumab; three phase 3 trials are ongoing (NCT 01127633,

NCT 00904683 and NCT00905372). Others antibodies in
phase 1 and 2 trials include PF-04360365, GSK-933776,
R-1415 and MABT-5102A.

Intravenous immunoglobulins (IVIG) contain naturally
occurring autoantibodies that specifically recognize Ab
and block is toxic effects [98–101]. A phase 3 study with
IVIG 10% is ongoing. Adekar et al. [102] showed that free
human Igg heavy chains (HC) possess anti-amyloidogenic
activity because they bind to an amyloid, fibril-related, con-
formational epitope while not affecting native Ab mono-
mers. Free human Igg HC offer the advantage of crossing
the BBB and being less prone to adverse inflammatory side
effects [103]. New strategies in the immunotherapy of AD
should be directed to Ab dimers and/or other toxic oligo-
mers, preserving Ab monomers, that may be involved in
maintaining learning memory and neuronal survival [104].
Conformation specific antibodies, binding toxic Ab oligo-
mers without affecting Ab monomers, have been recently
developed [105].

Strategies targeting tau

NFTs are intracellular aggregates of paired helical filaments
whose main constituent is a hyperphosphorylated form of
the protein tau [106]. Expression pattern of NFTs correlates
with the clinical onset and progression of AD [107].
Although Ab and tau have been considered for years as
distinct with regard to their role in AD pathogenesis, recent
evidence suggests that these two proteins significantly
interact and that tau-related events are essential for AD
pathogenesis [108]. Findings obtained in a triple trans-
genic mouse model of AD [109, 110], suggest that the two
major histopathological hallmarks of AD, i.e. Ab deposits
and NFT, containing hyperphosphorylated tau, lie along
the same pathological cascade. Ab accumulation precedes
and drives tau hyperphosphorylation via the activation of
different kinases such as cyclin dependent kinase 5 (CDK5)
and glycogen synthase kinase 3b (GSK3b) [108, 109, 111,
112]. Tau hyperphosphorylation leads to destabilization of
neuronal microtubular dynamics, which finally results in an
impairment of synaptic function [106]. The critical role of
tau in mediating Ab-induced neurodegeneration has been
demonstrated both in in vitro and in vivo models [113, 114].
Tau hyperphosphorylation and subsequent accumulation
in the dendritic compartment increases the vulnerability
of neurons to the toxic effects of Ab [108, 115]. Recent
efforts in drug discovery have been therefore directed to
develop inhibitors of tau-phosphorylation and com-
pounds that prevent tau aggregation and/or promote dis-
assembly. GSK3b is the main enzyme involved in tau
hyperphosphorylation [116]. Lithium and valproate, cur-
rently used as mood stabilizers, both inhibit GSK3b and
reduce tau phosphorylation in animal models [117]. Val-
proate has been studied in the Alzheimer’s Disease Coop-
erative Study (ADCS) [118]. In this study valproate did not
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modify cognition and functional status but reduced agita-
tion and psychosis [118]. A more recent meta-analysis,
however, shows that valproate is ineffective against agita-
tion in demented patients, and is also associated with an
unacceptable rate of adverse effects, such as falls, infection
and gastrointestinal disorders [119]. Lithium is neuropro-
tective in animal models of AD, not only via the inhibition
of GSK-3b, but also through other mechanisms, including
reduction of Ab production [120, 121] and release of
TGF-b1 [122]. In patients treated with lithium for psychiat-
ric disorders, the risk of developing AD is reduced [123,
124]. Some studies in AD patients, however, have failed to
demonstrate a positive effect of lithium on cognitive per-
formance [5, 125, 126]. A recent single centre study showed
that lithium reduced both cognitive decline and CSF con-
centration of P-tau in patients with amnestic MCI [127].
Safety problems related to lithium treatment in elderly
people need specific attention and may lead to high dis-
continuation rates in AD patients [128]. Other inhibitors of
GSK-3b have shown neuroprotective effects in preclinical
models of AD [129]. A phase 2 RCT has been recently com-
pleted with NP031112 (NCT00948259).

Methylthioninium chloride (MTC), also known as meth-
ylene blue, is a promising compound which possesses anti-
oxidative properties, reduces Ab oligomerization and,most
importantly, binds to the domain responsible for tau
aggregation [130]. A phase 2b RCT study of MTC mono-
therapy in patients with mild to moderate AD showed
improvement of cognition [131], that awaits to be vali-
dated in a forthcoming large scale phase 3 clinical trial
[131].

Other potential therapeutic
approaches

A causal link between an impairment of nerve growth
factor (NGF) pathway, activation of the amyloidogenic
pathway and neurodegeneration in the AD brain has been
proposed [132].Targeted delivery of NGF to basal forebrain
cholinergic neurons improves cognitive function in animal
models of AD [132]. However, because protein growth
factors do not cross the BBB, strategies targeting neu-
rotrophic factors have been poorly exploited so far. Early
studies, based on intracerebroventricular (ICV) infusion of
NGF, showed a positive effect on cognitive function but
were hampered by severe adverse effects related to ICV
administration [133, 134].To overcome these problems, the
implant of autologous fibroblasts, genetically modified to
express NGF into selected areas of CNS, has recently been
proposed [135]. Other strategies use NGF gene-delivery
through viral vectors [136–138] (NCT00876863 and
NCT00087789). Encapsulated cell bio-delivery (ECB) pro-
vides NGF to cholinergic basal forebrain neurons through
the stereotactic implantation of a catheter-like device con-

taining NGF-producing cells (NsG0202). Preliminary results
suggest a good safety and tolerability of NsG0202 [139].

Ab triggers mitochondrial dysfunction through a
number of pathways [140]. Rescue of mitochondrial func-
tion has been therefore considered as a new target to
develop disease modifying drugs [141]. Latrepirdine is a
weak inhibitor of cholinesterases and a low-affinity NMDA
receptor antagonist, which exerts its neuroprotective
effects through the stabilization of mitochondria via inhi-
bition of mitochondrial permeability transition pores
induced by Ab [142]. However, the ability of latrepirdine to
improve cognition in AD is controversial, due to a discrep-
ancy between the positive signal reported in a phase 2
clinical trial [143] and the subsequent null effect observed
in a phase 3 trial [144]. Two RCTs are ongoing to assess the
clinical efficacy of latrepirdine in combination with done-
pezil and memantine (NCT00829374 and NCT00912288).
EGCG, mentioned above as an inhibitor of Ab aggregation,
may also inhibit the release of apoptosis-inducing factor
(AIF) from mitochondria [145].

Finally a new pharmacological target proposed for
developing neuroprotective drugs in AD is the receptor for
advanced glycation endproducts (RAGE), a transmem-
brane protein that belongs to the immunoglobulin super-
family localized in neurons, microglia, astrocytes and the
BBB [146]. RAGE mediates the effects of Ab on microglia,
the BBB and neurons through different signaling path-
ways. RAGE enhances generation and accumulation of Ab
in the CNS by modulating BACE1 [147] and also promotes
the transport of Ab from vascular circulation to the brain.
Data from autopsy brain tissues, in vitro cell cultures and
transgenic mouse models suggest that the Ab-RAGE inter-
action exaggerates neuronal stress, impairs learning
memory and induces neuroinflammation [148]. A phase 2
trial with PF04494700, a RAGE antagonist, has been
recently completed in mild to moderate AD patients and
results on clinical efficacy of this drug are awaited in the
next months.

Deep brain stimulation (DBS) of memory circuits has
been proposed as an alternative, non-pharmacological
approach for AD treatment [149]. A recent phase I trial
conducted in six mild AD patients, receiving continuous
stimulation for 12 months, suggests that DBS can revert
impaired glucose utilization in the temporal and parietal
lobes as assessed by PET and also slows cognitive decline.
Additional studies are needed to confirm these prelimi-
nary results.

Limitations and future directions

The pharmacological treatment of AD actually involves
cholinesterase inhibitors and memantine, which provide
mainly symptomatic short term benefits without counter-
acting the progression of the disease. Drug discovery in
AD has attempted in the last decade to develop disease
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modifying drugs with the help of preclinical models, but
none of these drugs has succeeded in phase 3. Factors that
might explain this failure include suboptimal study design
(lack and/or inadequate biomarkers and outcome mea-
surements) and, most importantly, time course of treat-
ment in relation to the development of disease. Available
data from failed phase 3 studies suggest that mild to mod-
erate AD patients may be too late in the disease process
to improve substantively their outcome following drug
treatment.

New criteria for the diagnosis of AD have enlarged the
window for the detection of the early stages of the disease
and include biomarkers mechanistically related to AD
pathology. Adoption of these early biomarkers in imple-
menting design of future studies is highly desirable. Finally,
the heterogeneity of AD should be considered in the
future when planning RCTs to evaluate the efficacy of
disease modifying drugs. Because AD is heterogeneous in
terms of clinical presentation, diagnostic issues, underlying
neuropathology and mixed causes of dementia have been
described in many late onset AD patients, a major chal-
lenge will be to identify subgroups with homogeneous
biomarkers and to improve the neuropsychological tools
for detecting deficits of episodic memory in amnestic MCI
patients at high risk to convert into AD. At present, the
focus in AD drug development is shifting from treatment
to prevention [150]. The new strategy will examine the
potential neuroprotective activity of disease modifying
drugs in the presymptomatic stages of AD, with the help of
biomarkers that predict disease progression before devel-
opment of overt dementia.
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